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Abstract Rigorous assessment of uncertainties associated with
capacitor installation in distribution systems is the aim of the
present paper. Interval mathematics provides a powerful tool for
modeling uncertainties. To account for such uncertainties, a
heuristic method coupled with interval mathematics is developed
with the aim of maximizing a cost saving function. The effects of
uncertain inputs within the proposed model are examined for
various assumed levels of overall uncertainties. To assess the
relative contribution of each uncertain input, an interval
sensitivity analysis is carried out. While catering for
uncertainties, the proposed method offers utilities with
alternatives for selecting the standard capacitor sizes to be used
and the associated costs to be saved. This should enable utilities
to make informed decisions regarding installing capacitors for
reactive power compensation in their distribution systems. A
procedure is devised in order to produce sharp bounds of the
interval outcomes. Successful implementation of the proposed
method is described using a nine- bus radial distribution system.

Index Terms reactive power compensation, uncertainty,
distribution systems, interval mathematics.

I. INTRODUCTION
E NERGY management through reactive power

compensation on distribution systems has, recently,
emerged as a topic of current research interest [1]-[4].

Reactive power flow in a distribution system produces losses
and results in increased rating for the system components.
Shunt capacitors are usually installed to reduce these power
losses, increase the released thermal capacities of the lines and
transformers and improve the system voltage profile.
However, the data employed in the reactive power
compensation analysis is usually derived from many sources
with varying degrees of accuracy. Accounting for such
uncertainties is necessary to produce realistic results which
utilities can employ to make informed decisions regarding
reactive power compensation in their distribution systems.

Uncertainties can be looked upon as a condition in which the
possibility of errors exists as a result of having less than total
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information about the surrounding environment. They are
beyond the utility's foreknowledge or control. In a distribution
system, the reactive load is always varying and it is not a
realistic proposition to determine capacitor sizes and locations
based on an average of the reactive loads as even this number
is subject to change as the load varies. In addition, many of
the reactive power compensation techniques involve the
optimization of a cost function which require parameters such
as the cost of the capacitors, the cost of energy and the cost of
the peak power savings to which only an estimation ( single-
point) without exact certainty can be obtained [3].
Consequently, the validity of the results generated are
questionable.

Interval mathematics provides a powerful tool for the
implementation and extension of the "unknown but bounded"
concept [5]-[7]. Using interval analysis, there is no need for
many simulation runs as the total variation of the solution
considers the simultaneous variations of all inputs in a single
run. In this form of mathematics, interval numbers are used
instead of single point numbers.

This paper presents an interval method coupled with a
heuristic technique for maximizing the cost saving; by placing
optimal capacitors at proper locations in interval format.
Uncertainties in the parameters are integrated into the analysis,
as interval numbers, to allocate, sequentially, the capacitors
according to the upper limit of the maximum interval saving
outcome. Once locations are identified, the standard capacitor
size, at a selected location, is determined through the
optimization of the cost saving function. A comprehensive
uncertainty level analysis is presented. The relative
significance of each uncertain input is established through an
interval sensitivity analysis. The method offers utilities with
alternatives for selecting the standard capacitor sizes to be
used and the associated costs to be saved. To overcome the
difficulty of conservative bounds, a procedure is devised in
order to produce sharp bounds of the interval outcomes and
consequently enhances the decision making process. The
proposed method is tested on a nine-bus distribution system
and encouraging results are reported.

II. THE GOVERNING EQUATIONS

In order to account for uncertainties associated with the
capacitors sizing and location problem, the maximum cost
saving analysis is followed [4]. The input parameters'
uncertainties, in interval format, are integrated into the
governing equations as follows:
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where P is the total active power loss for a distribution system
with n branches, Ii and Ri are the current magnitude and
resistance, respectively of branch i. The branch current can be
obtained from the load flow solution. This current has two
components; active (Ia) and reactive (I). Thus, the system
losses can be written as

n n

,/J ai i / J ri iV J

If a capacitor of current Ik is placed at a node k, the system
losses are

n k n

P =Zi]Ri +Z(I', +ICk) Ri + E I2Ri (3)
i =1 i =1 i =k +1

Subtracting (3) from (2), the loss reduction APk is
k k

APk =-2ICkZEIriRi -IiZRi (4)
i=1 i=1

Assuming there is no significant change in the node voltage
after setting the capacitor and using the cost function equation,
the cost reduction can be defined as
AS = KPAP +KeAE -KckQck (5)
where Kp is the annual cost in $/KW and Kck is the annual cost
in $/KVAr for the capacitor placed at node k both represented
in interval format. Ke is the interval annual cost ofKWh losses
in $/KWh with the energy losses, defined over a time period T,
using (4) as

k k

AEk =-2LfTICkZIriRi -TIck ZRi (6)
i=1 i =1

where Lf is the interval load factor. Qck is the capacitor size at
node k and equals

Qck = IckVk (7)

Substituting for (4), (6-7) in (5), we get
k k

AS =-2K ICkZIiRi -K Ick Ri
i=l i=l

where

Kp = K + K,TLf + kVkp p e f k-

2,IriRi
i =1

(8)

Substituting from (11) into (8) and (4), we obtain the interval
maximum net saving and the corresponding interval loss
reduction as follows:
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Using (7) and (11-13), respectively, we can calculate the
size of the capacitor used at a certain node k that maximizes
the total system cost reduction and we can compute the
maximum cost reduction as well as the corresponding loss
reduction, all in interval format.

III. INTERVAL MATHEMATICS

Interval mathematics provides a useful tool in determining
the effects of uncertainty in parameters used in a computation.
In this form ofmathematics, interval numbers are used instead
of ordinary single point numbers. An interval number is
defined as an ordered pair of real numbers representing the
lower and upper bounds of the parameter range [6], [7]. An
interval number can then be formally defined as follows; [a,
b], where a < b. In the special case where the upper and lower
bounds of an interval number are equal, the interval is referred
to as a point or a degenerate interval and interval mathematics
is reduced to ordinary single point arithmetic.

Given two interval numbers, [a, b] and [c, d], the rules for
interval addition, subtraction, multiplication, and division are
as follows:

[a,b]+[c,d]=[a+c,b +d]
[a,b]-[c,d] =[a-d,b -c]
[a,b] * [c,d ] = [min(ac,ad,bc,bd),max(ac,cad,bc,bd)]
[a,b]l/[c,d]=[a,b] *[I/d,I c],where OX [c,d]

(9)

KP =KP+KeT

The value of Iek that maximizes the cost reduction is obtained
by

aAS =0 (10)
aick
From (9), we get the interval Ick as

k

KKp 1
ick =

"IV kKp 'Ri
i =1

(1 1)

Implementing interval analysis techniques confronts some

obstacles because its algebraic structure is unlike that of
common single point arithmetic. Accordingly, interval
computations may produce wide bounds.
Given a set of interval input parameters, the bounds of the

resulting interval computations may depend on the calculation
procedure as well as the input parameters. Therefore, an effort
has to be made to reduce the width of the resulting interval
bounds. Normally, the approach to producing better bounds
has been to rearrange the expression to reduce the appearance
of the interval parameters [6], [7].
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IV UNCERTAINTIES IN THE CAPACITOR PLACEMENT ROBLEM

Inspection of equations (7-13) reveals that it is likely that
values for Kp, Ke, KCk and Lf can not be obtained with absolute
certainty. For instance, K'p and Ke , the costs for the peak
power and energy losses respectively can be calculated in
many ways but it is probably known that there is an upper and
lower bound for these costs which can be attributed with more
certainty than a single- point value for each cost [3]. Likewise,
for the reactive load factor Lf a range of values can also be
determined. Thus by using interval mathematics, the
uncertainties associated with the capacitor allocation
technique could be more effectively understood if these input
parameters were treated as interval numbers whose ranges
contain the uncertainties in those parameters. The resulting
computations, carried out entirely in interval form, would then
literally carry the uncertainties associated with the data
through the analysis. Likewise, the final outcome in interval
form would contain all possible solutions due to the variations
in input parameters.

V. ALGORITHM

The implementation of the proposed optimal capacitor sizing
and placement technique in interval mathematics is performed
in the Matlab R environment. The steps of the algorithm are
summarized as follows:
1) Run the load flow program for the original uncompensated
feeder to calculate the voltages and currents at each bus using
the Gauss-Seidel method.
2) Assume an initial value for the single point estimate
capacitor cost KCk as the average cost for all available
standards for the studied feeder.
3) Let the input parameters (KAp, Ke, Kk and Lf) as an interval
numbers with a realistic tolerance of ±500 of their single point
estimates.
4) Select a bus and apply (7), (11-13) to compute the interval
capacitor size, the interval current capacitor, the interval
maximum saving and the corresponding interval loss reduction
respectively. Repeat this step for all buses in the system,
except the source bus.
5) Identify the candidate bus that has the highest interval cost
saving (defined here as the bus with the highest upper bound
in the interval cost saving) provided that the evaluated interval
loss reduction and interval capacitor size are positive.
6) Once a bus is identified as a candidate bus, determine all
the standard capacitor sizes lying within the interval capacitor
size at this bus. In case no standard size lies within the
interval, then the one nearest to the interval is selected (i.e. the
closest standard size to both the lower upper bounds of the
interval). These procedure are applied at any one candidate
bus selected.
7) Perform the load flow calculations, for every single
standard capacitor selected earlier, to ensure that no voltage
violation takes place. If there is a voltage violation for one or
more standard capacitor sizes, eliminate them from further
consideration. If all the capacitor sizes result in voltage
violation, then go to step 5 to select the next candidate bus.
8) If there is no voltage violation, set the standard capacitor
size, among the series of standard sizes in this interval, that

provides the highest cost saving at this bus and take the
corresponding exact capacitor cost value KCk.
9) Repeat steps 4-8 to get the next capacitor bus and hence the
sequence of buses to be compensated until it is found that
there is no significant cost saving can be achieved by further
capacitor placement.

The above algorithm can be looked upon as consisting oftwo
nested loops. The first is a global one that loops over
candidate buses to determine the interval capacitor values at
all buses and the corresponding interval standard sizes. While
the second is local as it searches for the optimal standard
capacitor size, within an interval, at a specific candidate bus.

VI. SIMULATION RESULTS

To illustrate the numerical algorithm presented above, a test
system whose load and feeder data given in [8], is
investigated.
The radial distribution feeder has 9 load buses and its rated
substation voltage is 23kV. The estimated values for Kr, Ke
and Lf are $168/kW, $0.3/kWh, and 0.5 respectively [3],[9].
Commercially available capacitor sizes with $/kVAr are used
in the analysis. As the maximum capacitor size QCmax should
not exceed the reactive load (i.e. 4186kVAr), this results in 27
possible capacitor sizes with their corresponding cost/kVAr
and their values may be derived assuming a life expectancy of
ten years (placement, maintenance, and running costs are
neglected) [9].

Applying load flow solution on this feeder, before
compensation, the cost function and the total power losses are
$ 131,675 and 783.8 kW respectively. The maximum and
minimum bus voltage magnitudes are 0.9929 and 0.8375 p.u.,
where the voltage of the substation (bus number 0) is assumed
to be 1 p.u., thus we have generally 0.8375<V, <1 p.u. The
following sections describe the compensation procedure for
the test feeder; with the input parameters Kp, Ke, KCk and Lf all
assumed to be interval numbers. The computations are carried
out using the Intlab toolbox [10].

i) Base Case (5% tolerance)
To demonstrate the application of the proposed algorithm,

equations (7), (11-13) are employed to obtain the required
outcomes. A tolerance of±500 is assumed in all parameters.

Table I
Optimal sizes of singly located capacitors, cost savings and

losses reduction
Bus Q, (kVAr) AS ($) AP (kW)
no.
1 [2018.1, 3057.1] [170.16, 353.27] [3.4883, 6.0349]
2 [2247.2, 3270.7] [237.57, 455.33] [4.1538, 6.937]
3 [3568.2,4437] [4049,5664.6] [27.184,40.741]
4 [3415.8, 4215.2] [6860.9, 9452.8] [42.76, 63.979]
5 [2309, 2838.4] [7548, 10320] [45.223, 67.63]
6 [1997, 2453.4] [7236.8, 9882.3] [43.086, 64.431]
7 [1561.9, 1917.2] [6729.8, 9173.7] [39.697, 59.358]
8 [1 100.6, 1349.5] J [6213.1, 8450.7] [36.22, 54.156]

63



9 [836.88, 1025.5] [5558.4, 7552.1] [32.218, 48.171]

Table I shows the optimal size of a single located capacitor
(Q,), the maximum cost saving (AS) and corresponding loss
reduction (AP), for all buses, as interval outcomes. It is noticed
that the bus that provides the highest upper bound in the cost
saving is bus 5 (10,320$) which corresponds to the interval
capacitor size [2309, 2838.4] KVAr. This identifies bus 5 as
the first bus to be compensated. There are 3 standard sizes
which fall within this range (i.e. 2400, 2550, 2700 KVAr).
Computing the cost saving for each of the 3 standard sizes
(provided no voltage violation occurs), it was found that the
size of 2700KVAr provides the highest cost saving. The
single- point estimates for the capacitor size, maximum cost
saving and corresponding loss reduction at bus 5 were also
computed and found to be 2560.4KVar, 8839.6$, and
55.849kW respectively. It is clear that the estimated values of
the outcomes are within the lower and upper bounds of the
corresponding interval results. When the compensation
procedure was continued, it was found that the next node to be
compensated is node 9 with 450KVAr followed by node 4
with 900KVAr.

The proposed technique produces a total cost saving and a
total loss reduction of [9015.52, 12358.7] $ and [54.74, 81.92]
kW respectively. The estimated values of maximum cost
saving and loss reduction are 10875 $ and 69.65 kW
respectively by setting capacitor sizes of 2550, 450, and 900
KVAr at bus 5, 9, and 4 respectively. Again, it is noted that
the single-point values are within the lower and upper bounds
of the interval outcomes. There was an improvement in
voltage profile of about 500 in the obtained minimum voltage.

The proposed interval technique furnishes utilities with
alternatives of using any available standard capacitor size,
lying within the interval capacitor size outcome, together with
the associated cost saving. The maximum cost saving,
achieved by the selection of any of these standard sizes, would
certainly have a lower limit which corresponds to the lower
bound of the interval outcome. Prior knowledge of such
information could be of significance in utility planning.

ii) Assessment ofthe uncertainty level
In order to assess the uncertainties associated with the

various input parameters Kp, Ke, Kck and Lf, the level of
uncertainty of all parameters has been taken to vary by 10% in
case and 15% in another. Table II shows that the compensated
nodes remain the same in all cases. However, the number of
available standard capacitor sizes, for node 4, has changed to
be 750, 900, and again 900KVAr for tolerances of 5, 10, 15%
respectively while those at node 5 and node 9 remain in all
cases the same at 2700 and 450 KVAr, respectively. It is
observed that the interval bounds of AP and AS for the higher
tolerances contains those of lower tolerances, e.g., the interval
outcome of AS for a 5% uncertainty is contained within the
intervals of the 10% and 15% levels. It is also noted that the
radius of the outcome increases proportional to the increase of
the uncertainty level. Results showed that while the single
point estimate for AS overestimates the interval outcome

(represented here by the interval midpoint) for the lower
tolerance of 500, the opposite is true for the higher tolerance
levels of 10 and 15%. As the interval outcome width increases
(e.g. for 10% and 15% tolerances), the number of standard
capacitor sizes available, for use by utilities, increases at all
compensated nodes. For example, the number of standard
capacitor sizes at node 5, for 10% tolerance, becomes 7
instead of 3 at 500 tolerance.

Table II
Results for different uncertainty levels

Tol. Node Qc No. of Qcst AP AS
No. kVAr st. cap. kVAr (kW) ($)
5 [2080,3147] 7 2700 [35.6,80.8] [6419.3,12020]

10% 4 [370,560] 1 450 [5.9,13.5] [1063.1,1994.3]
9 [541,905] 3 900 [1.5,3.7] [173.3,397.6]
Total [42.9,97.95] [7655.7,14412]
5 [1871,3493] 1 1 2700 [26,96] [5432,13979]

15% 4 [332,621] 2 450 [4.4,15.9] [899,2320]
9 [469,1023] 3 900 [1.1,4.4] [137,480]

Total _131.5,116.31 16468,167791

iii) Sensitivity analysis ofthe inputparameters
By using interval analysis, there is no need for many

simulation runs as the total variation of the solution considers
the simultaneous variations of all inputs in a single run. In
order to evaluate the relative influence of each input parameter
Kp,KeKe k and Lf, an interval sensitivity analysis has been
carried out. The quantities of interest are the interval
maximum cost saving AS and the corresponding interval loss
reduction AP. Table III shows the total interval outcomes for
AP and AS when every input parameter is assumed to vary
alone with tolerances of 5%, 10% and 15%. It was found that
the compensated nodes have not changed for all cases. Close
inspection of Table III, reveals that Kp is the most influencing
parameter on the interval outcomes followed by KAk. The
radius of the interval AS , when varying Kp alone, is 1479.6,
3293.3. and 5022.3 for tolerance of 5, 10, and 15%
respectively. As for varying K,k alone, these values are 41.5,
82.5, and 124 respectively. The other two parameters Ke and
Lf have almost a negligible effect on AS for the same
tolerances. The above results point out to the importance of
accurate determination of these parameters as the confidence
in the computed interval outcomes depends mainly on the
confidence in the input parameters and not on computational
procedures. The standard capacitor sizes at the compensated
nodes when Kp alone is varied, are the same as those when all
the uncertainties are included.

Table III
Results for Sensitivity analysis of the input parameters

par. Tol. 5% 10%0 15%
Kp AP(kW) [54.99,81.61] [43.39,97.29] [33.08,114.59]

AS($) [9353,12312] [7720,14307] [6559,16603]
K,k AP(kW) [69.38,69.92] [69.12,70.18] 68.86,70.44]

AS($) [10834,10917] [10793,10958] [10752,11000]
Ke AP(kW) [69.63,69.66] [69.61,69.69] [69.59,69.7]

AS($) [10873,10877] [10871,10879] [10869,10881]
Lf AP(kW) [69.64,69.65] [69.64,69.66] [69.63,69.67]

AS($) [10874,10876] [10873,10877] [10872,10878]
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iv) Proposed techniquefor sharp bounds
In view of the fact that the algebraic structure of interval

mathematics is unlike that of common single point arithmetic,
interval computations may, sometimes, produce conservative
bounds [6], [7]. In order to produce better bounds (i.e. sharp
bounds) of the interval outcomes the term K' s", appearing

in the governing equations, is proposed to be of the following
form:

KeT(Lf -1)+-

K

Kp

KckVk
k

2>IriRi
i=1 (15)

Kp +KeT

Equation (15) is then used to modify (7) and (11-13). It is
expected with such modification to get sharp bounds of the
interval outcomes as the appearance of the interval input
parameter K1p has been reduced [6].

Table IV shows the results of the modified algorithm and
also its significance. For instance, at bus number 5, the earlier
radius (half the interval width) of the capacitor size interval
was 264.7. This value had led to the possible use of 3 standard
capacitor sizes falling within that range. The corresponding
radius of the interval numbers of the cost saving, and loss
saving were 1385.8 and 11.2, respectively. With the modified
algorithm, the radius of the interval number of the capacitor
size is reduced to 8.2467. This value would lead to the use of
a single standard capacitor size within that range. The
corresponding radius of the interval numbers of the cost
saving, and loss saving after modification become 497.96 and
0.34904, respectively.

Table IV
Optimal sizes of singly located capacitors, cost savings and losses

reduction using the modified technique

Using the above results, a first standard capacitor size of
2550 KVAr is placed at bus 5. When the procedure is
repeated, a second interval outcomes of [479.8, 483] KVAr,
[1552.9, 1738.6] $, and [10.34, 10.47] kW, respectively, are

achieved at bus 9. This will lead to a standard size of
450KVAr at this bus. Final cost saving and loss reduction of
[352.61, 427.84] $, and [3.26, 3.53] kW are achieved by
placing a third interval capacitor of [828.9, 868.7] KVAr at
bus 4, leading to a standard capacitor size of 900 KVAr. The

technique provides a total cost saving and total loss reduction
of [10247.25, 11504.01] $ and [69.09, 70.19] kW respectively,
when the above 3 standard capacitor sizes are installed. After
compensation, the maximum and minimum bus voltage
magnitudes are found to be 0.9961 and 0.88196 p.u. These
results show that the widths of the interval outcomes of the
maximum cost saving and loss reduction have been reduced
and their corresponding estimated values, still fall within the
modified interval outcomes.

VII CONCLUSIONS
The capacitor sizing and placement problem is modeled

using a combined heuristic and interval mathematics method.
Use of interval mathematics enables the integration of the
effects of parameters' uncertainties into the analysis and
eliminates the need for many simulation runs. The effects of
uncertain inputs within the proposed model are examined for
various overall uncertainty levels. The relative contribution of
each uncertain input is assessed through an interval sensitivity
analysis. While catering for uncertainties, the method offers
utilities with alternatives for selecting the standard capacitor
sizes to be used and the associated costs to be saved. This
enhances their ability to make informed decisions regarding
installing capacitors for reactive power compensation in their
distribution systems. A procedure is devised in order to
produce sharp bounds of the interval outcomes. Successful
implementation of the method is described using a nine- bus
test distribution system.
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Bus Q, (kVAr) AS ($) AP (kW)
no.
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7 [1726.2, 1734.8] [7437.5, 8300.7] [48.787, 49.262]
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